仿生学家们先是注意到了蝠鲼的胸鳍。蝠鲼虽生活在水中,但当它游动时,胸鳍却如同翅膀一般上下拍打。。2007年,我们将这一原理应用于Air_ray  中。这种人造鳍片采用气流优化式设计,可提高空气动力效率,同时翅膀可以灵活扭转,确保全部力量可以完全得到发挥。一台伺服电机沿纵向交替驱动两个侧翼,使羽翼上下摆动。另一个伺服电机驱动拍打着的翅膀沿横向轴旋转,由此操控 Air_ray 向后移动。凭借Fin Ray Effect® 轻巧的设计,氦气的浮力与拍打翅膀产生的驱动力,Air_ray能如同蝠鲼在水中游动一样在空气中移动。

2009 年开发的 AirPenguin 也采用了类似原理。它们运用的飞行技术与其生物样板的游动技巧类似。被动扭转翅膀可产生正向与反向推力。

AirPenguin 是第三组可以自主飞行的产品,它们漂浮于指定空间内,空间范围由超声波发射站进行监控。这些“企鹅”可在这一空间内自由移动。

微控制器使这些“企鹅”可以自主地或根据特定规则探索这一空间。

From water to air

Building on this, in 2011 we deciphered the secret of bird flight and presented the SmartBird. This bionic technology platform, inspired by the herring gull, can start, fly and land by itself – without additional drive.

Not only do its wings beat up and down, but they also twist in a specific manner. This is done by an active articulated torsion drive, which, in conjunction with a complex control system, achieves previously unattained efficiency levels in flight. Continuous diagnostics ensures a safe flight. While the SmartBird is flying, data such as the wing position, the wing torsion or the status of the battery are recorded and checked in real time by the software.

Flying skills of the dragonfly

The kind of flying displayed by the dragonfly is even more complex. Its flying skills are unique: it can move in all spatial directions, remain still in the air and glide without beating its wings at all. Thanks to its ability to move both pairs of wings independently of each other, it can brake and turn abruptly, accelerate rapidly and even fly backwards.

With the BionicOpter our bionics team technically transferred these highly complex properties to an ultra-lightweight flying object in 2013. For the first time, a model can master more flight conditions than a helicopter, a motorized aircraft and a glider combined. By controlling the flapping frequency and rotation of each wing, all four wings can be individually adjusted in terms of the direction and strength of thrust. The remotely controlled dragonfly can thus take up almost any position in space.

Flying as a group

Festo perfected lightweight construction and miniaturization in 2015 with the eMotionButterflies.Each of the bionic butterflies weighs just 32 g. To replicate the flight of their natural role model as closely as possible, the eMotionButterflies are equipped with highly integrated on-board electronics. They can control the wings precisely and individually and thus realize fast movements.

Ten cameras installed in the space detect the butterflies using their infrared markers. The cameras transmit the position data to a central master computer which coordinates the butterflies.

Semi-autonomous flying in a defined space

The bionic engineers have developed this intelligent networking system further and will demonstrate the BionicFlyingFoxat the Hannover Messe 2018. It can fly semi-autonomously thanks to the combination of on-board electronics and an external camera system. This allows the artificial bat, which has a wingspan of 2.28 m, to fly through the air.

An elastic airtight membrane stretches from the tips of the fingers to the feet of the artificial bat. The specially developed membrane consists of a knitted elastane fabric and films welded together at selected points. Thanks to this honeycomb structure, the BionicFlyingFox can fly even if the bionic fabric sustains minor damage.

大自然中生物的飞行方式各有千秋——要将这些技术投入到科技研发中,需要面临轻量化与功能整合两大挑战。而BionicFlyingFox将所有高载荷运动学中的关节点置于同一平面内,以便整个机翼呈剪刀状折叠。至此,费斯托成功解密了动物世界中的已知的飞行方式。然而探索远没有结束。在大自然中,还有其他无与伦比的现象,启发着仿生研究团队发现新的科技方案。